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Abstract. The leading corrections to electroweak precision observables in the MSSM with non-minimal
flavor violation (NMFV) are calculated and the effects on MW and sin2 θeff are analyzed. The corrections
are obtained by evaluating the full one-loop contributions from the third and second generation scalar
quarks, including the mixing in the scalar top and charm, as well as in the scalar bottom and strange
sector. Furthermore the leading corrections to the mass of the lightest MSSM Higgs-boson, mh, is obtained.
The electroweak one-loop contribution to MW can amount up to 140 MeV and up to 70 × 10−5 for sin2

eff,
allowing one to set limits on the NMFV parameters. The corrections for mh are not significant for moderate
generation mixing.

1 Introduction

Supersymmetric theories of the strong and electroweak
interactions, like the minimal supersymmetric standard
model (MSSM) [1] as the theoretically favored extension
of the standard model (SM), predict the existence of scalar
partners f̃L, f̃R to each SM chiral fermion, and of spin-1/2
partners to the gauge- and Higgs-bosons. So far, the direct
search for SUSY particles could only set lower bounds
of O(100) GeV on their masses [2]. In a similar way, the
search for MSSM Higgs-bosons resulted in lower limits of
about 90 GeV for the neutral and 80 GeV for the charged
Higgs particles [4].

An alternative way, as compared to the direct search
for SUSY or Higgs particles, is to probe SUSY via virtual
effects of the additional non-standard particles to preci-
sion observables. This requires a very high precision of
the experimental results as well as of the theoretical pre-
dictions. A predominant role in this respect has to be as-
signed to the ρ-parameter [5], with loop contributions ∆ρ
through vector-boson self-energies constituting the leading
process-independent quantum corrections to electroweak
precision observables, such as the prediction for ∆r in the
MW –MZ interdependence and the effective leptonic weak
mixing angle, sin2 θeff .

Radiative corrections to the electroweak precision ob-
servables within the MSSM, originating from the virtual
presence of scalar fermions, charginos, neutralinos, and
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Higgs-bosons, have been discussed at the one-loop level
in [6, 7], providing the full one-loop corrections. More re-
cently, also the leading two-loop contributions in O(ααs)
to ∆ρ from quarks, squarks, gluons, and gluinos have
been obtained [8] as well as the gluonic two-loop correc-
tions to the MW –MZ interdependence [9]. Contrary to
the SM case, these two-loop strong corrections turned out
to increase the one-loop contributions, leading to an en-
hancement of up to 35% [8]. Most recently, the leading
two-loop contributions to ∆ρ at O(α2

t ), O(αtαb), O(α2
b),

i.e. the leading two-loop contributions involving the top
and bottom Yukawa couplings, have been evaluated [10].
They affect MW and sin2 θeff by shifts reaching 12 MeV
and 5 × 10−5, respectively.

At the quantum level, the Higgs sector of the MSSM
is considerably affected by loop contributions and makes
mh yet another sensitive observable. Precise predictions
for the mass mh of the lightest Higgs-boson h and its cou-
plings to other particles in terms of the relevant SUSY
parameters are necessary in order to determine the dis-
covery and exclusion potential of the upgraded Tevatron,
and for physics at the LHC and a future linear collider,
where high-precision measurements of the Higgs-boson(s)
profile will become feasible [11–13].

Radiative corrections to the Higgs-boson masses in
the CP-conserving MSSM with minimal flavor violation
(MFV) are meanwhile quite advanced. Besides the full
one-loop corrections [14, 15], the two-loop corrections
have been evaluated in the effective-potential method
[16–19], the renormalization-group approach [20], and the
Feynman-diagrammatic approach [21–23] (see [24, 25] for
a comparison), providing all leading two-loop contribu-
tions available by now [26]. However, the impact of non-
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minimal flavor violation (NMFV) on the MSSM Higgs-
boson masses and mixing angles, entering already at the
one-loop level, has not been explored so far, although ef-
fects from possible NMFV on Higgs-boson decays were
investigated in [27, 28]. Simultaneously, effects of NMFV
enter also the electroweak precision observables at the one-
loop level, but have never been analyzed as yet. Hence,
we study in this paper the consequences from NMFV for
both the electroweak precision observables and the MSSM
lightest Higgs-boson mass mh.

The most general flavor structure of the soft SUSY-
breaking sector with flavor non-diagonal terms would in-
duce large flavor-changing neutral-currents, contradicting
the experimental results [2]. Attempts to avoid this kind
of problem include flavor-blind SUSY-breaking scenar-
ios, like minimal Supergravity or gauge-mediated SUSY-
breaking. In these scenarios, the sfermion-mass matrices
are flavor diagonal in the same basis as the quark matrices
at the SUSY-breaking scale. However, a certain amount
of flavor mixing is generated due to the renormalization-
group evolution from the SUSY-breaking scale down to
the electroweak scale. Estimates of this radiatively in-
duced off-diagonal squark-mass terms indicate that the
largest entries are those connected to the SUSY partners
of the left-handed quarks [29, 30], generically denoted as
∆LL. Those off-diagonal soft SUSY-breaking terms scale
with the square of diagonal soft SUSY-breaking masses
MSUSY, whereas the ∆LR and ∆RL terms scale linearly,
and ∆RR with zero power of MSUSY. Therefore, usually
the hierarchy ∆LL � ∆LR,RL � ∆RR is realized. It was
also shown in [29, 30] that mixing between the third and
second generation squarks can be numerically significant
due to the involved third-generation Yukawa couplings.
On the other hand, there are strong experimental bounds
on squark mixing involving the first generation, coming
from data on K0–K̄0 and D0–D̄0 mixing [31,32].

The analytical results obtained in this paper have been
derived for the general case of mixing between the third
and second generation of squarks, i.e. all NMFV contri-
butions, ∆LL,LR,RL,RR, can be chosen independently in
the t̃/c̃ and in the b̃/s̃ sector (corrections from the first-
generation squarks are not considered, for reasons men-
tioned above). The numerical analysis of NMFV effects,
however, and the illustration of the behavior of mh and
electroweak observables are performed for the simpler, but
well motivated, scenario (also chosen in [28]) where only
mixing between t̃L and c̃L as well as between b̃L and s̃L

is considered, with ∆t
LL and ∆b

LL as the only flavor off-
diagonal entries in the squark-mass matrices.

This paper is organized as follows. In Sect. 2 we re-
view the MSSM with NMFV and set up the notation.
Corrections to the lightest MSSM Higgs-boson mass at
the one-loop level arising from NMFV are presented in
Sect. 3. Analytical and numerical results for ∆ρ are given
in Sect. 4, together with a numerical analysis of the full
one-loop effects from scalar quarks on MW and sin2 θeff .
Section 5 is devoted to the conclusions. Finally, in the ap-
pendix, we list the set of Feynman rules for the general
case of NMFV.

2 Non-minimal flavor violation in the MSSM

As explained in the introduction, our analytical results
are obtained for a general mixing of the third and second
generation of scalar quarks. The squark mass matrices in
the basis of (c̃L, t̃L, c̃R, t̃R) and (s̃L, b̃L, s̃R, b̃R)1 are given
by

M2
ũ =




M2
L̃c

∆t
LL mcXc ∆t

LR

∆t
LL M2

L̃t
∆t

RL mtXt

mcXc ∆t
RL M2

R̃c
∆t

RR

∆t
LR mtXt ∆t

RR M2
R̃t


 , (1)

M2
d̃

=




M2
L̃s

∆b
LL msXs ∆b

LR

∆b
LL M2

L̃b
∆b

RL mbXb

msXs ∆b
RL M2

R̃s
∆b

RR

∆b
LR mbXb ∆b

RR M2
R̃b


 , (2)

with

M2
L̃q

= M2
Q̃q

+ m2
q + cos 2β M2

Z(T q
3 − Qqs

2
W),

M2
R̃q

= M2
Ũq

+ m2
q + cos 2β M2

ZQqs
2
W (q = t, c),

M2
R̃q

= M2
D̃q

+ m2
q + cos 2β M2

ZQqs
2
W (q = b, s),

Xq = Aq − µ(tanβ)−2T q
3 , (3)

where mq, Qq and T q
3 are the mass, electric charge and

weak isospin of the quark q. MQ̃q
, MŨq

, MD̃q
are the soft

SUSY-breaking parameters. The SU(2) structure of the
model requires MQ̃q

to be equal for t̃ and b̃ as well as for
c̃ and s̃. The expressions furthermore contain the Z- and
W -boson masses MZ,W ; the electroweak mixing angle in
sW = sin θW, cW = cos θW; the trilinear Higgs couplings
Aq (q = t, b, c, s) to t̃, b̃, c̃, s̃; the Higgsino mass parameter
µ, and tanβ = v2/v1.

In order to diagonalize the two 4 × 4 squark mass ma-
trices, two 4×4 rotation matrices, Rũ and Rd̃, are needed,

ũα = Rα,j
ũ




c̃L

t̃L
c̃R

t̃R




j

, d̃α = Rα,j

d̃




s̃L

b̃L

s̃R

b̃R




j

, (4)

yielding the diagonal mass-squared matrices as follows:

diag{m2
ũ1

, m2
ũ2

, m2
ũ3

, m2
ũ4

}α,β

= Rα,i
ũ

(
M2

ũ

)
i,j

(Rβ,j
ũ )†, (5)

diag{m2
d̃1

, m2
d̃2

, m2
d̃3

, m2
d̃4

}α,β

= Rα,i

d̃

(
M2

d̃

)
i,j

(Rβ,j

d̃
)†. (6)

1 Note that our convention is slightly different from the one
used in [28].
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Feynman rules that involve two scalar quarks can be
obtained from the rules given in the f̃L, f̃R basis by ap-
plying the corresponding rotation matrix (q̃ = ũ, d̃),

V (Xq̃αq̃′
β) = Rα,i

q̃ Rβ,j
q̃′ V (Xq̃iq̃

′
j). (7)

Thereby V (Xq̃iq̃
′
j) denotes a generic vertex in the

f̃L, f̃R basis, and V (Xq̃αq̃′
β) is the vertex in the NMFV

mass-eigenstate basis. The Feynman rules for the vertices
needed for our applications, i.e. the interaction of one
and two Higgs- or gauge-bosons with two squarks, can
be found in the appendix. This new set of generalized
vertices has been implemented into the program packages
FeynArts/FormCalc [35] extending the previous MSSM
model file [36]2. The extended FeynArts version was used
for the evaluation of the Feynman diagrams throughout
this paper to obtain the general analytical results.

For the numerical analysis we are more specific and
consider the simpler scenario with mixing only between
the left-handed components of t̃, c̃ and b̃, s̃, as explained
in the introduction. The only flavor off-diagonal entries
in the squark-mass matrices are normalized according to
∆t,b

LL = λt,bMQ̃3
MQ̃2

, following [30–32]3, where MQ̃3,Q̃2

are the soft SUSY-breaking masses for the SU(2) squark
doublet in the third and second generation. NMFV is thus
parametrized in terms of the dimensionless quantities λt

and λb (see [31–34] for experimentally allowed ranges).
The case of λt = λb = 0 corresponds to the MSSM with
minimal flavor violation (MFV). In detail, we have

∆t
LL = λtML̃t

ML̃c
, ∆t

LR = ∆t
RL = ∆t

RR = 0 ,

∆b
LL = λbML̃b

ML̃s
, ∆b

LR = ∆b
RL = ∆b

RR = 0 , (8)

for the entries in the matrices (1) and (2).
For the sake of simplicity, we have assumed in our nu-

merical analysis the same flavor mixing parameter in the
t̃–c̃ and b̃–s̃ sectors, λ = λt = λb. It should be noted in
this respect that LL blocks of the up-squark and down-
squark mass matrices are not independent because of the
SU(2) gauge invariance; they are related trough the CKM
mass matrix [32], which also implies that a large difference
between these two parameters is not allowed.

3 The mass of the lightest Higgs-boson

The higher-order corrected masses mh, mH of the CP-
even neutral Higgs-bosons h, H correspond to the poles of
the h, H-propagator matrix. In terms of its inverse, it is
given by

(∆Higgs)
−1 =

−i

(
p2 − m2

H,tree + Σ̂HH(p2) Σ̂hH(p2)
Σ̂hH(p2) p2 − m2

h,tree + Σ̂hh(p2)

)
, (9)

2 The model file is available on request.
3 The parameters λt and λb introduced here are denoted by

(δu
LL)23 and (δd

LL)23 in [30–32].

where mh,tree, mH,tree are the tree-level h, H masses, and
Σ̂(p2) denote the renormalized Higgs-boson self-energies
for a general momentum p. Determining the poles of the
matrix ∆Higgs in (9) is equivalent to solving the equation[

p2 − m2
h,tree + Σ̂hh(p2)

] [
p2 − m2

H,tree + Σ̂HH(p2)
]

−
[
Σ̂hH(p2)

]2
= 0 . (10)

The status of the available results for the self-energy con-
tributions to (9) has been summarized in the introduction
(see also [26] for a review).

Within the MSSM with MFV, the dominant one-loop
contributions to the self-energies in (9) result from the
Yukawa part of the theory (i.e. neglecting the gauge cou-
plings); they are described by loop diagrams involving
third-generation quarks and squarks. Within the MSSM
with NMFV, the squark loops have to be modified by
introducing the generation-mixed squarks, as given in
(4). The contributing Feynman diagrams are illustrated
in Fig. 1. The leading terms are obtained by evaluat-
ing the contributions to the renormalized Higgs-boson
self-energies at zero external momentum, Σ̂s(0), s =
hh, hH, HH. Thereby, the renormalized self-energies are
given by

Σ̂s = Σs − δVs, s = hh , hH , HH . (11)

Σs are the unrenormalized Higgs-boson self-energies, and
δVs are the counter terms for the various coefficients in
the quadratic part of the Higgs potential,

δVhh = δM2
A(cαcβ + sαsβ)2

− T1
e

2sWMW

(−2cαsαs3
β + cβ

(−c2
αs2

β + s2
α(1 + s2

β)
))

− T2
e

2sWMW

(−2cαsαc3
β + sβ(c2

α(1 + c2
β) − s2

αc2
β)
)

,

δVHH = δM2
A(sαcβ − cαsβ)2

− T1
e

2sWMW

(−cβs2
αs2

β + 2sαcαs3
β + c2

αcβ(1 + s2
β)
)

− T2
e

2sWMW
(2sαcαc3

β − c2
αc2

βsβ + (1 + c2
β)s2

αsβ) ,

δVhH = δM2
A

(
sβcβ(s2

α − c2
α) + sαcα(c2

β − s2
β)
)

− T1
e

2sWMW

(
s3

β(c2
α − s2

α) − sαcαcβ(1 + 2s2
β)
)

− T2
e

2sWMW

(
c3
β(c2

α − s2
α) + sαcαsβ(1 + 2c2

β)
)

. (12)

These expressions involve sα ≡ sin α , cα ≡ cos α of
the angle α diagonalizing the lowest-order Higgs-boson
mass matrix, the A-boson mass counter term, and the tad-
poles T1 and T2. In the on-shell renormalization scheme (in
the leading Yukawa approximation) they are determined
by

δM2
A = ΣA(0) (13)

and

T1 = TH |α→0 , T2 = Th|α→0 , (14)
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Fig. 1. Feynman diagrams for the squark
contributions to the Higgs-boson self-
energies and for the tadpole contributions

where Th,H correspond to the tadpole diagrams displayed
in Fig. 1.

Here we restrict ourselves to the dominant Yukawa
contributions resulting from the top and t/t̃ (and c/c̃) sec-
tor. Corrections from b and b/b̃ (and s/s̃) could only be
important for very large values of tanβ, tanβ >∼ mt/mb,
which we do not consider here. The analytical result of
the renormalized Higgs-boson self-energies, based on the
general 4 × 4 structure of the t̃/c̃ mass matrix, has then
been implemented into the Fortran code FeynHiggs2.1 [37]
that includes all existing higher-order corrections (of the
MFV MSSM). All data shown in this letter have then been
obtained with the help of FeynHiggs2.1.

The results for the lightest MSSM Higgs-boson mass,
including all available corrections also at the two-loop
level, are presented for five benchmark scenarios defined in
[38], named “mmax

h ” (to maximize the lightest Higgs-boson
mass), “constrained mmax

h ” (labeled as “Xt/MSUSY =
−2”), “no-mixing” (with no mixing in the MFV t̃ sec-
tor), “gluophobic Higgs” (with reduced ggh coupling), and
“small αeff” scenario (with reduced hbb̄ and hτ+τ− cou-
plings). For all these benchmark scenarios the soft SUSY-
breaking parameters in the three generations of scalar
quarks are equal,

MSUSY = MQ̃q
= MŨq

= MD̃q
, (15)

as well as all the trilinear couplings, As = Ab = Ac =
At. Despite these simplifications, the five scenarios can
show quite different behavior concerning observables in
the Higgs sector [38].

In Fig. 2 we illustrate the dependence of mh on λ
(= λt) in all five benchmark scenarios. MA has been fixed
to MA = 500 GeV, and tanβ is set to tan β = 5 (left) or
tan β = 20 (right). All scenarios show a similar behavior.
For small to moderate allowed values of λ the variation
of mh is small. Only for large values (around 0.5 in the
gluophobic Higgs scenario, and around 0.9 in the other
four scenarios) the variation of mh can be quite strong,

up to the O(5 GeV). In the gluophobic Higgs scenario un-
physical values for the scalar-quark masses are reached
already for smaller values of λ, since MSUSY is quite low
in this scenario (see [38] for details). Values of λ above
0.5 imply forbidden values for the squark masses in this
scenario. In all cases except for the small αeff scenario
the lightest Higgs-boson mass turns out to be reduced.
In the small αeff scenario it can be enhanced by up to
2 GeV. Considering that large values of λ are in conflict
with FCNC data, the impact of NMFV on mh is in gen-
eral rather small. Conversely, independent of low-energy
FCNC data on flavor mixing, high values of λ can be con-
strained by the experimental lower bound on mh [4].

4 ∆ρ and electroweak precision observables

One important consequence of flavor mixing through the
flavor non-diagonal entries in the squark mass matri-
ces (1) and (2) is to generate large splittings between
the squark-mass eigenvalues. The loop contribution to the
electroweak ρ-parameter,

∆ρ =
ΣZ(0)
M2

Z

− ΣW (0)
M2

W

, (16)

with the unrenormalized Z- and W -boson self-energies at
zero momentum, ΣZ,W (0), represents the leading univer-
sal corrections to the electroweak precision observables in-
duced by mass splitting between partners in isospin dou-
blets [5] and is thus sensitive to the mass-splitting effects
induced by non-minimal flavor mixing. Precisely measured
observables [39] like the W -boson mass, MW , and the
effective leptonic mixing angle, sin2 θeff , are affected by
shifts according to

δMW ≈ MW

2
c2
W

c2
W − s2

W
∆ρ,

δ sin2 θeff ≈ − c2
Ws2

W

c2
W − s2

W
∆ρ. (17)
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Fig. 2. The variation of mh with λ = λt is shown in five benchmark scenarios [38]. MA has been fixed to MA = 500 GeV, and
tan β is set to tan β = 5 (left panel) or tan β = 20 (right panel)

Within the MSSM with MFV, the dominant correction
from SUSY particles at the one-loop level arises from the
t̃ and b̃ contributions. Explicit expressions can be found
in [10], together with the SUSY-QCD and SUSY-EW cor-
rections at two-loop order.

Beyond the ∆ρ approximation, the shift in MW caused
by a variation of ∆r can be written as follows:

δMW = −MW

2
s2
W

c2
W − s2

W
δ(∆r) . (18)

As far as δ∆r originates from loop contributions to the
self-energies only, it is given by

δ(∆r) = Σ′
γ(0) − c2

W

s2
W

(
ΣZ(M2

Z)
M2

Z

− ΣW (M2
W )

M2
W

)

+
ΣW (0) − ΣW (M2

W )
M2

W

, (19)

with Σ′ = ∂
∂q2 Σ(q2). In the case considered here, the self-

energies in (19) stand for the set of squark-loop contribu-
tions. Likewise the induced shift in the effective mixing
angle reads as follows:

δ sin2 θeff =
c2
W s2

W

c2
W − s2

W
δ(∆r) (20)

− sWcW

[
ΣγZ(M2

Z)
M2

Z

− cW

sW

(
ΣZ(M2

Z)
M2

Z

− ΣW (M2
W )

M2
W

)]
,

again evaluated for the squark-loop contributions in our
case.

4.1 Analytical results for ∆ρ

Here we consider the supersymmetric NMFV contribu-
tions to ∆ρ resulting from squarks based on the general

4 × 4 mass matrix for both the t̃/c̃ and the b̃/s̃ sector,
visualized by the Feynman diagrams in Fig. 3. These con-
tributions will be denoted as ∆ρq̃. The analytical one-loop
result for ∆ρq̃ has been implemented into the Fortran code
FeynHiggs2.1 [37].

The squark contribution ∆ρq̃ can be decomposed ac-
cording to

∆ρq̃ = ΞZ + ΘZ + ΞW + ΘW , (21)

where Ξ and Θ correspond to different diagram topolo-
gies, i.e. to diagrams with trilinear and quartic couplings,
respectively (see Fig. 3). The explicit expressions read as
follows:

ΞW =
3g2

8π2M2
W

×
∑

a,b,c,d

∑
α,β

V ab
CKMV cd

CKMRαa
ũ Rαc

ũ Rβb

d̃
Rβd

d̃
B00(0, m2

ũα
, m2

d̃β
) ,

ΘW = − 3g2

32π2M2
W

×
∑

a

∑
α

{
(Rαa

ũ )2A0(m2
ũα

) + (Rαa
d̃

)2A0(m2
d̃α

)
}

,

ΞZ = − 3g2

144c2
Wπ2M2

Z

×
∑

α,β,γ,δ

{
κd̃(γ)Rαγ

d̃
Rβγ

d̃
κd̃(δ)R

αδ
d̃

Rβδ

d̃
B00(0, m2

d̃α
, m2

d̃β
)

+κũ(γ)Rαγ
ũ Rβγ

ũ κũ(δ)Rαδ
ũ Rβδ

ũ B00(0, m2
ũα

, m2
ũβ

)
}

,

ΘZ =
3g2

288c2
Wπ2M2

Z

×
∑

α,β,γ,δ

{
(κd̃(γ)2(Rαγ

d̃
)2A0(m2

d̃α
)

+ κũ(γ)2(Rαγ
ũ )2A0(m2

ũα
)
}

. (22)
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Fig. 3. Feynman diagrams for the squark
contributions to the gauge-boson self-
energies

Here the indices run from 1 to 2 for Latin letters, and
from 1 to 4 for Greek letters. The expressions contain the
one-point integral A0 and the two-point integral B00 in
Bµν(k) = gµν B00 + kµkνB11 in the convention of [35].
The remaining constants κũ and κd̃ are defined as follows:

κd̃ =




3 − 2 s2
W

3 − 2 s2
W

−2 s2
W

−2 s2
W


 , κũ =




−3 + 4 s2
W

−3 + 4 s2
W

4 s2
W

4 s2
W


 . (23)

The CKM matrix only affects ΞW . Corrections from
the first-generation squarks are negligible due to their very
small mass splitting. Non-minimal flavor mixing of the
first generation with the other ones has been set to zero
(see Sect. 2), but conventional CKM mixing is basically
present. Although it is required for a UV finite result,
it yields only negligibly small effects. Therefore, for sim-
plification, we drop the first generation and restore the
cancellation of UV divergences by a unitary 2 × 2 matrix
replacing the {23}-submatrix of the CKM matrix,

VCKM =

(
Vcs Vcb

Vts Vtb

)
=

(
cos ε sin ε

− sin ε cos ε

)
, (24)

with |ε| ≈ 0.04 close to the experimental entries [2] of the
conventional CKM matrix.

In the SM (and also in the MSSM with λ = λt = λb =
0) the choice of the sign of ε does not play a role. However,
the situation changes when λ �= 0 . In the expression for
∆ρq̃ some terms linear in ε arise from the expansion of
ΞW , and the sign of ε can affect the result significantly.
The expansion of ΞW can be expressed as,

ΞW = f0 + f1ε + f2ε
2 + . . . + fnεn + . . . (25)

where the coefficients fi (i = 0, 1, 2, . . .) are functions of
the rotation matrices Rq̃ and the squarks masses mq̃ and
therefore, they depend implicitly of the flavor parameter
λ. The explicit analytical expressions for the first terms
are

f0 = − 3g2

8M2
W π2

×
∑
α,β

(
R1β

d̃
R1α

ũ + R2β

d̃
R2α

ũ

)2
B00(0, m2

ũα
, m2

d̃β
) ,

f1 = − 3g2

4M2
W π2

×
∑
α,β

(
(R1α

ũ )2R1β

d̃
R2β

d̃
+ R1α

ũ R2α
ũ (R2β

d̃
)2

−R1α
ũ R2α

ũ (R1β

d̃
)2 − (R2α

ũ )2R1β

d̃
R2β

d̃

)
×B00(0, m2

ũα
, m2

d̃β
) ,

f2 =
3g2

8M2
W π2

×
∑
α,β

(
(R1α

ũ )2(R1β

d̃
)2 + (R1α

ũ )2(R2β

d̃
)2

−(R2α
ũ )2(R1β

d̃
)2 − (R2α

ũ )2(R2β

d̃
)2

+R1α
ũ R2α

ũ R1β

d̃
R2β

d̃

)
B00(0, m2

ũα
, m2

d̃β
) . (26)

Since ∆ρq̃ is a finite quantity, and the CKM matrix
effects (and therefore, the ε dependence) only appear in
ΞW , f0 is the unique coefficient in the expansion that
contributes to the cancellation of divergences in ∆ρq̃. The
coefficients f1 and f2 are finite and their λ dependence is
shown in Fig. 4. While f1 = 0 for λ = 0, f2 is not exactly
zero but its value is very small, around 5.5 × 10−5. This
small value at λ = 0 implies that the CKM effects in the
MSSM with MFV are indeed negligible, which is in agree-
ment with the universal assumptions in MFV calculations.
f1 is antisymmetric under λ → −λ, f2 is symmetric, and
so on. Therefore, ΞW (and thus ∆ρ) is symmetric under
the simultaneous reversal of signs ε → −ε, λ → −λ, i.e.
only the relative sign has a physical consequence, affecting
the results for ∆ρ significantly (see also Fig. 5 in the next
section). In physical terms, non-minimal squark mixing
can either strengthen or partially compensate the CKM
mixing.

4.2 Numerical evaluation of ∆ρ

For the numerical evaluation, the mmax
h and the no-mixing

scenario have been selected [38], but with a free scale
MSUSY. In the mmax

h benchmark scenario the trilinear cou-
pling At is not a free parameter, obeying Xt = 2MSUSY,
with Xt = At − µ cot β. In the no-mixing scenario, At

is defined by the requirement Xt = 0. The results are
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Fig. 4. f1 and f2 as function of λ. SUSY parameters as given
in (27)

independent of MA. The numerical values of the SUSY
parameters are

MSUSY = 1 TeV and 2 TeV, tan β = 30,

µ = 200 GeV, ε = 0.04, (27)

if not explicitly stated otherwise. The variation with µ
and tanβ is very weak, since they do not enter the squark
couplings to the vector-bosons.

To illustrate the above explained behavior with the
sign of ε explicitly, we show in Fig. 5 the corrections to ∆ρq̃

as a function of λ (= λt = λb) for different relative signs
of ε and λ, choosing λ > 0, and fixing |ε| = 0.04. MSUSY
has been set to MSUSY = 2 TeV. For the mmax

h scenario
the effect is small, but in the no-mixing scenario the re-
sults are affected significantly by the sign of ε. The squark
contribution to ∆ρq̃ can become of O(10−3) for λ ≥ 0.5.

In Fig. 6 we show the dependence of ∆ρq̃ on λ (=
λt = λb) for both the mmax

h and no-mixing scenario and
for two values of the SUSY mass scale, MSUSY = 1 TeV
and MSUSY = 2 TeV. It is clear that ∆ρq̃ grows with
the λ-parameter, being close to zero for λ = 0 and
MSUSY = 2 TeV. One can also see that the effects on ∆ρq̃

are in general larger for the no-mixing scenario (see also
the results shown in [8]). For large values of MSUSY the
correction increases with increasing λ since the splitting
in the squark sector increases.

The behavior of the corrections with the SUSY mass
scale is shown in Fig. 7 for different values of λ in the
mmax

h scenario (left panel) and in the no-mixing scenario
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Fig. 5. The variation of ∆ρq̃ with λ (= λt = λb) in the mmax
h

and no-mixing scenarios for different relative signs of ε and λ.
MSUSY = 2 TeV, other SUSY parameters as given in (27)

(right panel). The region below MSUSY <∼ 400 GeV (de-
pending on the scenario) implies too low and hence for-
bidden values for the squark masses. The curves are only
for the allowed regions. For λ = 0, ∆ρq̃ decreases, being
zero for large MSUSY values, in agreement with the re-
sults shown in [8]. We have also found that, for λ �= 0
and small values of MSUSY, ∆ρq̃ decreases until it reaches
a minimum and then increases for largest values of the
SUSY scale. This increasing behavior is more pronounced
for larger λ values, reaching the level of a few per mille.
The reason can be found once again the increasing mass
splitting.

We also consider the possibility of choosing different
values for λt and λb. We have checked that ∆ρq̃ increases
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Fig. 6. The variation of ∆ρq̃ with λ = λt = λb in the mmax
h sce-

nario and no-mixing scenario. MSUSY has been fixed to 1 TeV
and 2 TeV
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Fig. 7. The variation of ∆ρq̃ with MSUSY in the mmax
h sce-

nario (upper panel) and no-mixing scenario (lower panel), for
different values of λ

with λt and λb independently, being smallest for λt =
λb = 0. If λt is very different from λb, the values for ∆ρq̃

can be very large. For example, for the MSSM parameters
we have chosen, ∆ρq̃ can be as large as 0.08 for λt =
0.6, λb = 0. However, the large splitting between these two
parameters is disfavored (see the discussion at the end of
Sect. 2).

4.3 Numerical evaluation for MW and sin2 θeff

Here the numerical effects of the NMFV contributions on
the electroweak precision observables, δMW and δ sin2 θeff ,
are briefly analyzed. The shifts in MW and sin2 θeff have
been evaluated both from the complete expressions for
the scalar-quark contributions, (18) and (19), and using
the ∆ρq̃ approximation (17). The corrections to these
two observables based on (17) as a function of λ (=
λt = λb) are presented in Fig. 8 with the other param-
eters chosen according to (27). The mmax

h scenario and
no-mixing scenario are selected for both plots, with two
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Fig. 8. The variation of δMW and δ sin2 θeff as a function of
λ = λt = λb, for the mmax

h and no-mixing scenarios and differ-
ent choices of MSUSY obtained with (17). Using the complete
expressions (18) and (19) yields practically indistinguishable
results

values of MSUSY, as before. The induced shifts in MW

can become as large as 0.14 GeV for the extreme case,
i.e. when MSUSY = 2 TeV, λ = 0.6 and the case of
no-mixing is considered. In the mmax

h scenario δMW is
smaller, δMW

<∼ 0.05 GeV, but still sizeable. Using the
complete expressions (18) and (19) yields results practi-
cally indistinguishable from those shown in Fig. 8. Thus
(17) is a sufficiently accurate, simple approximation for
squark-mixing effects in the electroweak precision observ-
ables.

The shifts δ sin2 θeff , shown in the right plot of Fig. 8,
can reach values up 7 × 10−4 for MSUSY = 2 TeV and
λ = 0.6 in the no-mixing scenario, being smaller (but still
sizeable) for the other scenarios chosen here.

These variations have to be compared with the current
experimental uncertainties [39],

∆M exp,today
W = 34 MeV,

∆ sin2 θexp,today
eff = 17 × 10−5 , (28)
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and the expected experimental precision for the LHC,
∆MW = 15 − 20 MeV [40], and at a future linear collider
running on the Z peak and the WW threshold (GigaZ)
[41–43],

∆M exp,future
W = 7 MeV,

∆ sin2 θexp,future
eff = 1.3 × 10−5. (29)

Extreme parts of the NMFV parameters (especially for
λt �= λb) can be excluded already with today’s precision.
But even small values of λ = λt = λb could be probed with
the future precision on sin2 θeff , provided that theoretical
uncertainties will be sufficiently under control [44].

5 Conclusions

We have calculated the MSSM scalar-quark contributions
to electroweak observables arising from a NMFV mixing
of the third and second generation squarks. In particular,
we have evaluated the lightest MSSM Higgs-boson mass,
the ρ-parameter, and the electroweak precision observ-
ables MW and sin2 θeff . The analytical results have been
obtained for a general 4 × 4 mixing in the t̃/c̃ as well as
in the b̃/s̃ sector. They have been included in the Fortran
code FeynHiggs2.1 (see www.feynhiggs.de). The numeri-
cal analysis has been performed for a simplified model in
which only the left-handed squarks receive an additional
non-CKM mixing contribution.

Numerically we compared the effects of NMFV on the
mass of the lightest MSSM Higgs-boson in five benchmark
scenarios. For small and moderate NMFV the effect is
small, being at present lower than the theoretical uncer-
tainty of mh, δmtheo

h ≈ 3 GeV [26].
We have presented the analytical results for the squark

contribution to the ρ-parameter. The additional contribu-
tion can be of O(10−3) and can significantly depend on the
relative sign of CKM and non-CKM generation mixing.

Even larger contributions can be obtained if the mixing in
the t̃/c̃ and b̃/s̃ sector is varied independently.

Finally we have analyzed the NMFV corrections to
the electroweak precision observables MW and sin2 θeff .
We have shown that the effects of scalar-quark generation
mixing enters essentially through ∆ρ. Large parts of the
parameter space can be excluded already with today’s ex-
perimental precision of these observables, and even more
for the increasing precision at future colliders.
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Appendix

A The Feynman rules in the MSSM
with NMFV

In this section we list the Feynman rules for the various
vertices used in this paper. Note that the first generation
has been completely neglected and the indices have been
shifted accordingly: mu1 corresponds to mc, mu2 to mt,
Au

1 to Ac, Au
2 to At (and analogous for the down-type

sector). The CKM matrix, VCKM, is defined as in (24).
(The Feynman rules for the general case of three gener-
ation mixing can be obtained by replacing “2” by “3” in
the sum and in the R indices.)

A.1 2 Higgs – 2 Squarks

C(h, h, ũβ , −ũα) = −

i e2
2∑

n=1



((

c2α M2
W s2

β

) (−3 + 4 s2
W
)

+ 6 c2
α c2

W m2
un

) (
Rα,n

ũ (Rβ,n
ũ )∗

)
+(−2 c2α M2

W s2
β s2

W + 3 c2
α c2

W m2
un

) (
2 Rα,2+n

ũ (Rβ,2+n
ũ )∗

)



12 c2
W M2

W s2
β s2

W

C(h, h, d̃β , −d̃α) =

i e2
2∑

n=1



((

c2α c2
β M2

W

) (−3 + 2 s2
W
)− 6 c2

W s2
α m2

dn

) (
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d̃
(Rβ,n

d̃
)∗
)

−(
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β M2
W s2
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W s2

α m2
dn

) (
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d̃
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d̃
)∗
)
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β c2

W M2
W s2

W

C(H, H, ũβ , −ũα) = −

i e2
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n=1



((

c2α M2
W s2

β

) (
3 − 4 s2

W
)
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) (
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C(H, H, d̃β , −d̃α) = −
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A.2 2 Squarks – 2 Gauge Bosons
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ũ )∗
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A.4 Higgs – 2 Squarks
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ũ )∗ +
(
(−cα µ + sα Au∗

n )
(
3 cW mun Rβ,n

ũ
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